If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4x-3600=0
a = 1; b = 4; c = -3600;
Δ = b2-4ac
Δ = 42-4·1·(-3600)
Δ = 14416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14416}=\sqrt{16*901}=\sqrt{16}*\sqrt{901}=4\sqrt{901}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{901}}{2*1}=\frac{-4-4\sqrt{901}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{901}}{2*1}=\frac{-4+4\sqrt{901}}{2} $
| 0.5x=+x= | | u^2+(4u/5)=5 | | 10t+2=8-2t | | x-18^2=10 | | -3(x+8)=5(x-1) | | 7(x)=105 | | 36=1.5^x | | -2(2y-4)-y=-3(y-3) | | 2a^2-50a^2=0 | | 40x+20x=100 | | 6n+19=-78 | | 8(x+2)+6(x+2)=6x-6 | | 7=1/2y+5 | | 5=7+1/2y | | 17(x-3)+(17x-5)=187 | | 6x+12=3x+8+2x | | 5=12/y+7 | | 12(6x-1)=144x | | 8x+7=9x-6 | | 6x-11=4x+19 | | .2x-40=x-8 | | 42=8x3=30 | | 2(2x-1)=37-9x | | 31/12-211/12=n | | n/3=73 | | 2y-8+12-6y=-3+9+12y | | 2(10x+5)=8x+22 | | 10x+5=8x+22 | | 5(2a-3)=6(2a+110 | | 9=u-9 | | 2x4=-8÷2 | | 5(2a-3)=6(2a |